# MEM6810 Engineering Systems Modeling and Simulation 工程系统建模与仿真

Theory Analysis

#### Lecture 9: Output Analysis II: Comparison

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

shenhaihui.github.io/teaching/mem6810f

shenhaihui@sjtu.edu.cn

Spring 2024 (full-time)







#### Contents

- 1 Introduction
- 2 Comparison of Two Designs
  - ► Significant Difference
  - ► Independent Sampling
  - ► Common Random Numbers
- 3 Comparison of Multiple Designs
  - ► Bechhofer's Procedure
  - ▶ Paulson's Procedure
  - ► Ranking and Selection Review
  - ► Multi-Arm Bandit Problem



- 1 Introduction
- 2 Comparison of Two Designs
  - ► Significant Difference
  - ► Independent Sampling
  - ► Common Random Numbers
- 3 Comparison of Multiple Designs
  - ▶ Bechhofer's Procedure
  - ▶ Paulson's Procedure
  - ► Ranking and Selection Review
  - ► Multi-Arm Bandit Problem



- We have learnt how to estimate the absolute performance of a simulation model.
- We now discuss how to compare two or more simulation models, i.e. to estimate their relative performance.



- We have learnt how to estimate the absolute performance of a simulation model.
- We now discuss how to compare two or more simulation models, i.e. to estimate their relative performance.
- Here, different simulation models may refer to different designs, operation policies, etc., of a simulated system; in this lecture we simply call them different (system) designs.



- We have learnt how to estimate the absolute performance of a simulation model.
- We now discuss how to compare two or more simulation models, i.e. to estimate their relative performance.
- Here, different simulation models may refer to different designs, operation policies, etc., of a simulated system; in this lecture we simply call them different (system) designs.
- It is one of the most important uses of simulation.



- Key Question: Are the observed differences due to
  - the actual differences on the expected performance of system designs?
  - or the random errors in the simulation outputs?



- Key Question: Are the observed differences due to
  - the actual differences on the expected performance of system designs?
  - or the random errors in the simulation outputs?
- The comparison can be classified into two types:
  - Two system designs: using confidence interval of the difference.
  - Multiple (more than two) system designs: selection of the best.



- Introduction
- 2 Comparison of Two Designs
  - ► Significant Difference
  - ► Independent Sampling
  - ► Common Random Numbers
- 3 Comparison of Multiple Designs
  - ▶ Bechhofer's Procedure
  - ▶ Paulson's Procedure
  - ► Ranking and Selection Review
  - ► Multi-Arm Bandit Problem



- Let  $\theta_1$  and  $\theta_2$  be the mean performance of the two system designs in simulation.
- To compare  $\theta_1$  and  $\theta_2$ , we simply construct the point and interval estimates of  $\theta_1-\theta_2$



- Let  $\theta_1$  and  $\theta_2$  be the mean performance of the two system designs in simulation.
- To compare  $\theta_1$  and  $\theta_2$ , we simply construct the point and interval estimates of  $\theta_1-\theta_2$
- Suppose we have the simulation output data from simulation of two system designs.<sup>†</sup>

|        | Replication            |                 |       |            | Sample      | Sample   |
|--------|------------------------|-----------------|-------|------------|-------------|----------|
| System | 1                      | 2               |       | $R_i$      | Mean        | Variance |
| 1      | Y <sub>11</sub>        | Y <sub>21</sub> |       | $Y_{R_11}$ | $\bar{Y}_1$ | $S_1^2$  |
| 2      | <i>Y</i> <sub>12</sub> | $Y_{22}$        | • • • | $Y_{R_22}$ | $\bar{Y}_2$ | $S_2^2$  |



- Let  $\theta_1$  and  $\theta_2$  be the mean performance of the two system designs in simulation.
- To compare  $\theta_1$  and  $\theta_2$ , we simply construct the point and interval estimates of  $\theta_1-\theta_2$
- Suppose we have the simulation output data from simulation of two system designs.<sup>†</sup>

|        | Replication     |                        |         |             | Sample      | Sample      |
|--------|-----------------|------------------------|---------|-------------|-------------|-------------|
| System | 1               | 2                      |         | $R_i$       | Mean        | Variance    |
| 1      | Y <sub>11</sub> | Y <sub>21</sub>        |         | $Y_{R_1 1}$ | $\bar{Y}_1$ | $S_{1}^{2}$ |
| 2      | $Y_{12}$        | <i>Y</i> <sub>22</sub> | • • • • | $Y_{R_22}$  | $\bar{Y}_2$ | $S_{2}^{2}$ |

• Point estimator of  $\theta_1 - \theta_2$ :  $\bar{Y}_1 - \bar{Y}_2$ .



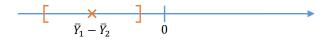
- Let  $\theta_1$  and  $\theta_2$  be the mean performance of the two system designs in simulation.
- To compare  $\theta_1$  and  $\theta_2$ , we simply construct the point and interval estimates of  $\theta_1 - \theta_2$
- Suppose we have the simulation output data from simulation of two system designs.<sup>†</sup>

|        | Replication     |                 |  |             | Sample      | Sample   |
|--------|-----------------|-----------------|--|-------------|-------------|----------|
| System | 1               | 2               |  | $R_i$       | Mean        | Variance |
| 1      | Y <sub>11</sub> | Y <sub>21</sub> |  | $Y_{R_1 1}$ | $\bar{Y}_1$ | $S_1^2$  |
| 2      | $Y_{12}$        | $Y_{22}$        |  | $Y_{R_22}$  | $\bar{Y}_2$ | $S_2^2$  |

- Point estimator of  $\theta_1 \theta_2$ :  $\bar{Y}_1 \bar{Y}_2$ .
- Approximate  $1 \alpha$  CI:  $\bar{Y}_1 \bar{Y}_2 \pm t_{v.1-\alpha/2} \times \text{s.e.}(\bar{Y}_1 \bar{Y}_2)$ .
  - s.e. $(\bar{Y}_1 \bar{Y}_2)$  is the estimator of standard error of  $\bar{Y}_1 \bar{Y}_2$ ; see more details about this quantity and v later.

<sup>&</sup>lt;sup>†</sup>The notation here is different from that in Lec 7; the second subscript indicates different system designs. SHEN Haihui

• Case 1 – Strong evidence that  $\theta_1 < \theta_2$ :

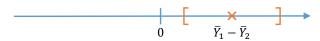




• Case 1 – Strong evidence that  $\theta_1 < \theta_2$ :



• Case 2 – Strong evidence that  $\theta_1 > \theta_2$ :





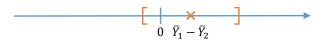
• Case 1 – Strong evidence that  $\theta_1 < \theta_2$ :



• Case 2 – Strong evidence that  $\theta_1 > \theta_2$ :



• Case 3 – No strong evidence that one is larger than the other:



• It does not imply  $\theta_1 = \theta_2!$ 



- The first two cases are conclusive.
- If in case 3, then we increase the number of replications  $R_1$  and/or  $R_2$ , after which the CI would likely shift, and definitely shrink in length.

- The first two cases are conclusive.
- If in case 3, then we increase the number of replications  $R_1$  and/or  $R_2$ , after which the CI would likely shift, and definitely shrink in length.
- We will shrink the CI until case 1 or 2 is achieved, or the confidence interval is so narrow, which suggests that we do not need to separate them.



- For the comparison of performance of two designs, there is an important distinction between
  - statistically significant difference (统计意义上的显著区别);
  - practically significant difference (实际意义上的显著区别).



- For the comparison of performance of two designs, there is an important distinction between
  - statistically significant difference (统计意义上的显著区别);
  - practically significant difference (实际意义上的显著区别).
- Statistical significance answers the following questions:
  - Is the observed difference  $\bar{Y}_1 \bar{Y}_2$  larger than its variability?
  - Have we collected enough data to be confident that the observed difference is real (not just by chance)?



- For the comparison of performance of two designs, there is an important distinction between
  - statistically significant difference (统计意义上的显著区别);
  - practically significant difference (实际意义上的显著区别).
- Statistical significance answers the following questions:
  - Is the observed difference  $ar{Y}_1 ar{Y}_2$  larger than its variability?
  - Have we collected enough data to be confident that the observed difference is real (not just by chance)?
- Practical significance answers the following question:
  - Is the true difference  $|\theta_1-\theta_2|$  large enough so it is worthwhile to separate them?



► Significant Difference

 Cases 1 and 2 imply a statistically significant difference, while case 3 does not.



- Cases 1 and 2 imply a statistically significant difference, while case 3 does not.
- In case 1, we may reach the conclusion that  $\theta_1 < \theta_2$  and decide that design 2 is better (suppose larger is better).
- However, if the actual difference  $|\theta_1 \theta_2|$  is very small, then it might not be worth the cost to replace design 1 with design 2.

- Cases 1 and 2 imply a statistically significant difference, while case 3 does not.
- In case 1, we may reach the conclusion that  $\theta_1 < \theta_2$  and decide that design 2 is better (suppose larger is better).
- However, if the actual difference  $|\theta_1 \theta_2|$  is very small, then it might not be worth the cost to replace design 1 with design 2.
- Confidence intervals do not answer the question of practical significance directly.
  - Instead, they bound, with probability  $1-\alpha$ , the true difference  $\theta_1-\theta_2$  within the range  $\bar{Y}_1-\bar{Y}_2\pm t_{v,\,1-\alpha/2}\times \mathrm{s.e.}(\bar{Y}_1-\bar{Y}_2)$ .
  - Whether a difference within these bounds is practically significant depends on the particular problem.



- Independent sampling means that different random number streams are used to simulate the two systems.
  - All the observations of system 1  $\{Y_{r1}: r=1,\ldots,R_1\}$  are statistically independent of all the observations of system 2  $\{Y_{r2}: r=1,\ldots,R_2\}$ .



- Independent sampling means that different random number streams are used to simulate the two systems.
  - All the observations of system 1  $\{Y_{r1}: r=1,\ldots,R_1\}$  are statistically independent of all the observations of system 2  $\{Y_{r2}: r=1,\ldots,R_2\}$ .
- Suppose  $Var(Y_{r1}) = \sigma_1^2$  and  $Var(Y_{r2}) = \sigma_2^2$ . Due to the independence,

$$Var(\bar{Y}_1 - \bar{Y}_2) = Var(\bar{Y}_1) + Var(\bar{Y}_2) = \frac{\sigma_1^2}{R_1} + \frac{\sigma_2^2}{R_2}.$$



- Independent sampling means that different random number streams are used to simulate the two systems.
  - All the observations of system 1  $\{Y_{r1}: r=1,\ldots,R_1\}$  are statistically independent of all the observations of system 2  $\{Y_{r2}: r=1,\ldots,R_2\}$ .
- Suppose  $Var(Y_{r1}) = \sigma_1^2$  and  $Var(Y_{r2}) = \sigma_2^2$ . Due to the independence,

$$\operatorname{Var}(\bar{Y}_1 - \bar{Y}_2) = \operatorname{Var}(\bar{Y}_1) + \operatorname{Var}(\bar{Y}_2) = \frac{\sigma_1^2}{R_1} + \frac{\sigma_2^2}{R_2}.$$

• Standard error of  $\bar{Y}_1 - \bar{Y}_2$  is  $\sqrt{\frac{\sigma_1^2}{R_1} + \frac{\sigma_2^2}{R_2}}$ .



- Independent sampling means that different random number streams are used to simulate the two systems.
  - All the observations of system 1  $\{Y_{r1}: r=1,\ldots,R_1\}$  are statistically independent of all the observations of system 2  $\{Y_{r2}: r=1,\ldots,R_2\}$ .
- Suppose  $\mathrm{Var}(Y_{r1})=\sigma_1^2$  and  $\mathrm{Var}(Y_{r2})=\sigma_2^2$ . Due to the independence,

$$Var(\bar{Y}_1 - \bar{Y}_2) = Var(\bar{Y}_1) + Var(\bar{Y}_2) = \frac{\sigma_1^2}{R_1} + \frac{\sigma_2^2}{R_2}.$$

- Standard error of  $ar{Y}_1 ar{Y}_2$  is  $\sqrt{rac{\sigma_1^2}{R_1} + rac{\sigma_2^2}{R_2}}.$
- $\sigma_i^2$  is estimated via sample variance

$$S_i^2 = \frac{1}{R_i - 1} \sum_{r=1}^{R_i} (Y_{ri} - \bar{Y}_i)^2.$$



- Independent sampling means that different random number streams are used to simulate the two systems.
  - All the observations of system 1  $\{Y_{r1}: r=1,\ldots,R_1\}$  are statistically independent of all the observations of system 2  $\{Y_{r2}: r=1,\ldots,R_2\}$ .
- Suppose  $Var(Y_{r1}) = \sigma_1^2$  and  $Var(Y_{r2}) = \sigma_2^2$ . Due to the independence,

$$Var(\bar{Y}_1 - \bar{Y}_2) = Var(\bar{Y}_1) + Var(\bar{Y}_2) = \frac{\sigma_1^2}{R_1} + \frac{\sigma_2^2}{R_2}.$$

- Standard error of  $\bar{Y}_1 \bar{Y}_2$  is  $\sqrt{\frac{\sigma_1^2}{R_1} + \frac{\sigma_2^2}{R_2}}$ .
- $\sigma_i^2$  is estimated via sample variance

$$S_i^2 = \frac{1}{R_i - 1} \sum_{r=1}^{R_i} (Y_{ri} - \bar{Y}_i)^2.$$

• Standard error of  $ar{Y}_1 - ar{Y}_2$  is estimated via

s.e.
$$(\bar{Y}_1 - \bar{Y}_2) = \sqrt{\frac{S_1^2}{R_1} + \frac{S_2^2}{R_2}}$$
.



• The  $1 - \alpha$  CI is approximated by

$$\bar{Y}_1 - \bar{Y}_2 \pm t_{v, 1-\alpha/2} \times \text{s.e.}(\bar{Y}_1 - \bar{Y}_2).$$
 (2)

where s.e. $(\bar{Y}_1 - \bar{Y}_2)$  is given in (1), and the degree of freedom v is

$$v = \frac{[S_1^2/R_1 + S_2^2/R_2]^2}{[S_1^2/R_1]^2/(R_1 - 1) + [S_2^2/R_2]^2/(R_2 - 1)}.$$



• The  $1-\alpha$  CI is approximated by

$$\bar{Y}_1 - \bar{Y}_2 \pm t_{v, 1-\alpha/2} \times \text{s.e.}(\bar{Y}_1 - \bar{Y}_2).$$
 (2)

where s.e. $(\bar{Y}_1 - \bar{Y}_2)$  is given in (1), and the degree of freedom v is

$$v = \frac{[S_1^2/R_1 + S_2^2/R_2]^2}{[S_1^2/R_1]^2/(R_1 - 1) + [S_2^2/R_2]^2/(R_2 - 1)}.$$

- The approximated CI (2) is called the Welch confidence interval (Welch 1938).
  - ullet Sometimes, people will round v to integer for convenience.



▶ Independent Sampling

• If  $R_1=R_2=R$ , or we are willing to discard some observations from the system design on which we actually have more data, we can pair  $Y_{r1}$  with  $Y_{r2}$  to define  $Z_r=Y_{r1}-Y_{r2}$ , for  $r=1,\ldots,R$ .



- If  $R_1=R_2=R$ , or we are willing to discard some observations from the system design on which we actually have more data, we can pair  $Y_{r1}$  with  $Y_{r2}$  to define  $Z_r=Y_{r1}-Y_{r2}$ , for  $r=1,\ldots,R$ .
- Point estimator of  $\theta_1 \theta_2$ :  $\bar{Z} = \frac{1}{R} \sum_{r=1}^R Z_r = \bar{Y}_1 \bar{Y}_2$ .

$$\operatorname{Var}(\bar{Z}) = \frac{\operatorname{Var}(Z_r)}{R} = \frac{\operatorname{Var}(Y_{r1} - Y_{r2})}{R} = \frac{\sigma_1^2 + \sigma_2^2}{R}$$
$$= \operatorname{Var}(\bar{Y}_1 - \bar{Y}_2) = \operatorname{Var}(\bar{Y}_1) + \operatorname{Var}(\bar{Y}_2) = \frac{\sigma_1^2 + \sigma_2^2}{R}.$$
 (3)



- If  $R_1=R_2=R$ , or we are willing to discard some observations from the system design on which we actually have more data, we can pair  $Y_{r1}$  with  $Y_{r2}$  to define  $Z_r=Y_{r1}-Y_{r2}$ , for  $r=1,\ldots,R$ .
- Point estimator of  $\theta_1 \theta_2$ :  $\bar{Z} = \frac{1}{R} \sum_{r=1}^R Z_r = \bar{Y}_1 \bar{Y}_2$ .

$$\operatorname{Var}(\bar{Z}) = \frac{\operatorname{Var}(Z_r)}{R} = \frac{\operatorname{Var}(Y_{r1} - Y_{r2})}{R} = \frac{\sigma_1^2 + \sigma_2^2}{R}$$
$$= \operatorname{Var}(\bar{Y}_1 - \bar{Y}_2) = \operatorname{Var}(\bar{Y}_1) + \operatorname{Var}(\bar{Y}_2) = \frac{\sigma_1^2 + \sigma_2^2}{R}.$$
 (3)

• To estimate  $Var(Z_r)$ , instead of estimating  $\sigma_1^2$  and  $\sigma_2^2$  separately, we can directly use

$$S^{2} = \frac{1}{R-1} \sum_{r=1}^{R} (Z_{r} - \bar{Z})^{2}.$$
 (4)



- If  $R_1=R_2=R$ , or we are willing to discard some observations from the system design on which we actually have more data, we can pair  $Y_{r1}$  with  $Y_{r2}$  to define  $Z_r=Y_{r1}-Y_{r2}$ , for  $r=1,\ldots,R$ .
- Point estimator of  $\theta_1 \theta_2$ :  $\bar{Z} = \frac{1}{R} \sum_{r=1}^R Z_r = \bar{Y}_1 \bar{Y}_2$ .

$$\operatorname{Var}(\bar{Z}) = \frac{\operatorname{Var}(Z_r)}{R} = \frac{\operatorname{Var}(Y_{r1} - Y_{r2})}{R} = \frac{\sigma_1^2 + \sigma_2^2}{R}$$
$$= \operatorname{Var}(\bar{Y}_1 - \bar{Y}_2) = \operatorname{Var}(\bar{Y}_1) + \operatorname{Var}(\bar{Y}_2) = \frac{\sigma_1^2 + \sigma_2^2}{R}.$$
 (3)

• To estimate  $Var(Z_r)$ , instead of estimating  $\sigma_1^2$  and  $\sigma_2^2$  separately, we can directly use

$$S^{2} = \frac{1}{R-1} \sum_{r=1}^{R} (Z_{r} - \bar{Z})^{2}.$$
 (4)

• Approximate  $1 - \alpha$  CI:

$$\bar{Z} \pm t_{R-1, 1-\alpha/2} \frac{S}{\sqrt{R}}$$
.



- Common Random Numbers (CRN, also known as correlated sampling): For each replication, the same random numbers are used to simulate both systems.
  - For each replication r, the two estimates,  $Y_{r1}$  and  $Y_{r2}$ , are correlated.
  - In this case,  $R_1$  and  $R_2$  must be equal, say,  $R_1 = R_2 = R$ .



- Common Random Numbers (CRN, also known as correlated sampling): For each replication, the same random numbers are used to simulate both systems.
  - For each replication r, the two estimates,  $Y_{r1}$  and  $Y_{r2}$ , are correlated.
  - In this case,  $R_1$  and  $R_2$  must be equal, say,  $R_1 = R_2 = R$ .
- The purpose of using CRN is to induce a positive correlation between  $Y_{r1}$  and  $Y_{r2}$  for each r and thus to achieve a variance reduction in the point estimator of  $\theta_1 \theta_2$ ,  $\bar{Z}$ .

$$Var(\bar{Z}) = \frac{Var(Y_{r1} - Y_{r2})}{R} = \frac{\sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2}{R}.$$
 (6)



- Common Random Numbers (CRN, also known as correlated sampling): For each replication, the same random numbers are used to simulate both systems.
  - For each replication r, the two estimates,  $Y_{r1}$  and  $Y_{r2}$ , are correlated.
  - In this case,  $R_1$  and  $R_2$  must be equal, say,  $R_1 = R_2 = R$ .
- The purpose of using CRN is to induce a positive correlation between  $Y_{r1}$  and  $Y_{r2}$  for each r and thus to achieve a variance reduction in the point estimator of  $\theta_1 \theta_2$ ,  $\bar{Z}$ .

$$Var(\bar{Z}) = \frac{Var(Y_{r1} - Y_{r2})}{R} = \frac{\sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2}{R}.$$
 (6)

•  $\mathrm{Var}(\bar{Z})$  in (6) is smaller than that in (3)  $\Longrightarrow$  higher precision of point estimator.



- Common Random Numbers (CRN, also known as correlated sampling): For each replication, the same random numbers are used to simulate both systems.
  - For each replication r, the two estimates,  $Y_{r1}$  and  $Y_{r2}$ , are correlated.
  - In this case,  $R_1$  and  $R_2$  must be equal, say,  $R_1 = R_2 = R$ .
- The purpose of using CRN is to induce a positive correlation between  $Y_{r1}$  and  $Y_{r2}$  for each r and thus to achieve a variance reduction in the point estimator of  $\theta_1 \theta_2$ ,  $\bar{Z}$ .

$$Var(\bar{Z}) = \frac{Var(Y_{r1} - Y_{r2})}{R} = \frac{\sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2}{R}.$$
 (6)

- $\mathrm{Var}(\bar{Z})$  in (6) is smaller than that in (3)  $\Longrightarrow$  higher precision of point estimator.
- CI is still computed via (4) and (5), but the width will be smaller ⇒ higher precision.

- It is never enough to simply use the same seed for the random-number generator(s):
  - The random numbers must be synchronized: each random number used in one model for some purpose should be used for the same purpose in the other model.
  - E.g., if the ith random number is used to generate a service time at work station 2 for the 5th arrival in model 1, the ith random number should be used for the very same purpose in model 2.



- It is never enough to simply use the same seed for the random-number generator(s):
  - The random numbers must be synchronized: each random number used in one model for some purpose should be used for the same purpose in the other model.
  - E.g., if the ith random number is used to generate a service time at work station 2 for the 5th arrival in model 1, the ith random number should be used for the very same purpose in model 2.
- The CRN idea is also used when we validate simulation model via input-output transformation, where we prefer to compare the model and actual system under the same historical input, rather than generate the input from input model.



- Introduction
- 2 Comparison of Two Designs
  - ► Significant Difference
  - ► Independent Sampling
  - ► Common Random Numbers
- 3 Comparison of Multiple Designs
  - ► Bechhofer's Procedure
  - ► Paulson's Procedure
  - ► Ranking and Selection Review
  - ► Multi-Arm Bandit Problem



- Suppose there are k > 2 system designs in total.
- The interested mean performance of design i is  $\theta_i$  (unknown).



- Suppose there are k > 2 system designs in total.
- The interested mean performance of design i is  $\theta_i$  (unknown).
- Some possible goals:
  - **1** Estimation of each parameter  $\theta_i$ .
  - **2** Comparison of each  $\theta_i$  to a control, say,  $\theta_1$  ( $\theta_1$  can represent the mean performance of an existing system).
  - 3 All pairwise comparisons.
  - **4** Selection of the best  $\theta_i$  (largest or smallest).



- Suppose there are k > 2 system designs in total.
- The interested mean performance of design i is  $\theta_i$  (unknown).
- Some possible goals:
  - **1** Estimation of each parameter  $\theta_i$ .
  - **2** Comparison of each  $\theta_i$  to a control, say,  $\theta_1$  ( $\theta_1$  can represent the mean performance of an existing system).
  - 3 All pairwise comparisons.
  - **4** Selection of the best  $\theta_i$  (largest or smallest).
- The first three can be achieved by simultaneous construction of confidence intervals, whereas the last by some selection approaches.



- Suppose there are k > 2 system designs in total.
- The interested mean performance of design i is  $\theta_i$  (unknown).
- Some possible goals:
  - **1** Estimation of each parameter  $\theta_i$ .
  - **2** Comparison of each  $\theta_i$  to a control, say,  $\theta_1$  ( $\theta_1$  can represent the mean performance of an existing system).
  - 3 All pairwise comparisons.
  - **4** Selection of the best  $\theta_i$  (largest or smallest).
- The first three can be achieved by simultaneous construction of confidence intervals, whereas the last by some selection approaches.
- From now on, without loss of generality, let's assume the best  $\theta_i$  is the largest one.

- Assumption 1: For each design i with mean performance  $\theta_i$ , the noisy output  $Y_{ri} \sim \mathcal{N}(\theta_i, \sigma_i^2)$ , for  $r = 1, 2, \ldots$
- Assumption 2: No CRN is used, i.e.,  $Y_{ri}$  is independent of  $Y_{rj}$  for  $i \neq j$ .
- Assumption 3 (**indifference-zone**): The gap between the largest  $\theta_i$  and the second largest  $\theta_i$  is at least  $\delta$ , a value known to us.
- Assumption 4 (known variance):  $\sigma_i^2$  is known, for  $i=1,\ldots,k$ .



- Assumption 1: For each design i with mean performance  $\theta_i$ , the noisy output  $Y_{ri} \sim \mathcal{N}(\theta_i, \sigma_i^2)$ , for  $r = 1, 2, \ldots$
- Assumption 2: No CRN is used, i.e.,  $Y_{ri}$  is independent of  $Y_{rj}$  for  $i \neq j$ .
- Assumption 3 (**indifference-zone**): The gap between the largest  $\theta_i$  and the second largest  $\theta_i$  is at least  $\delta$ , a value known to us.
- Assumption 4 (known variance):  $\sigma_i^2$  is known, for  $i=1,\ldots,k$ .
- Bechhofer (1954) first developed a selection procedure, which can ensure the probability of correct selection (PCS):

$$\mathbb{P}\{\text{select the largest } \theta_i\} \ge 1 - \alpha, \tag{7}$$

under Assumptions 1-4, where  $\alpha$  is a user specified value and  $1-\alpha>1/k$ .



- Bechhofer's Procedure
  - $\bullet$  Calculate a constant h, which satisfies

$$\mathbb{P}\{Z_i \le h, \ i = 1, 2, \dots, k - 1\} = 1 - \alpha, \tag{8}$$

where  $(Z_1, Z_2, ..., Z_{k-1})^T$  has a multivariate normal distribution with means 0, variances 1, and common pairwise correlations 1/2.

**2** For i = 1, ..., k, let

$$n_i = \left\lceil \frac{2h^2\sigma_i^2}{\delta^2} \right\rceil. \tag{9}$$

**3** For i = 1, ..., k, run  $n_i$  replications for design i and calculate

$$\bar{Y}_i = \frac{1}{n_i} \sum_{r=1}^{n_i} Y_{ri}.$$

**4** Select the design with the largest sample mean  $\bar{Y}_i$  as the best.



$$\theta_k - \theta_i \ge \delta, \ i = 1, \dots, k - 1. \tag{10}$$



$$\theta_k - \theta_i \ge \delta, \ i = 1, \dots, k - 1. \tag{10}$$

$$\mathbb{P}\{\mathsf{select}\ k\} = \mathbb{P}\{\bar{Y}_i - \bar{Y}_k < 0,\ i = 1, \dots, k-1\}$$



$$\theta_k - \theta_i \ge \delta, \ i = 1, \dots, k - 1. \tag{10}$$

$$\mathbb{P}\{\text{select } k\} = \mathbb{P}\{\bar{Y}_i - \bar{Y}_k < 0, \ i = 1, \dots, k - 1\}$$

$$= \mathbb{P}\left\{\frac{\bar{Y}_{i} - \bar{Y}_{k} - (\theta_{i} - \theta_{k})}{\sqrt{\sigma_{k}^{2}/n_{k} + \sigma_{i}^{2}/n_{i}}} < \frac{-(\theta_{i} - \theta_{k})}{\sqrt{\sigma_{k}^{2}/n_{k} + \sigma_{i}^{2}/n_{i}}}, \ i = 1, \dots, k - 1\right\}$$



$$\theta_k - \theta_i \ge \delta, \ i = 1, \dots, k - 1. \tag{10}$$

$$\begin{split} & \mathbb{P}\{\mathsf{select}\ k\} = \mathbb{P}\{\bar{Y}_i - \bar{Y}_k < 0,\ i = 1, \dots, k - 1\} \\ & = \mathbb{P}\left\{\frac{\bar{Y}_i - \bar{Y}_k - (\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}} < \frac{-(\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}},\ i = 1, \dots, k - 1\right\} \\ & = \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}},\ i = 1, \dots, k - 1\right\} \end{split}$$



$$\theta_k - \theta_i \ge \delta, \ i = 1, \dots, k - 1.$$
 (10)

$$\begin{split} & \mathbb{P}\{\mathsf{select}\;k\} = \mathbb{P}\{\bar{Y}_i - \bar{Y}_k < 0,\; i = 1, \dots, k-1\} \\ & = \mathbb{P}\left\{\frac{\bar{Y}_i - \bar{Y}_k - (\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}} < \frac{-(\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}},\; i = 1, \dots, k-1\right\} \\ & = \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}},\; i = 1, \dots, k-1\right\} \\ & \geq \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\sqrt{\sigma_k^2/\left(\frac{2h^2\sigma_k^2}{\sigma_k^2}\right) + \sigma_i^2/\left(\frac{2h^2\sigma_i^2}{\sigma_k^2}\right)}},\; i = 1, \dots, k-1\right\} \quad \text{(due to (9))} \end{split}$$



$$\theta_k - \theta_i \ge \delta, \ i = 1, \dots, k - 1. \tag{10}$$

$$\begin{split} &\mathbb{P}\{\mathsf{select}\;k\} = \mathbb{P}\{\bar{Y}_i - \bar{Y}_k < 0,\; i = 1, \dots, k-1\} \\ &= \mathbb{P}\left\{\frac{\bar{Y}_i - \bar{Y}_k - (\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}} < \frac{-(\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}},\; i = 1, \dots, k-1\right\} \\ &= \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}},\; i = 1, \dots, k-1\right\} \\ &\geq \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\sqrt{\sigma_k^2/\left(\frac{2h^2\sigma_k^2}{\delta^2}\right) + \sigma_i^2/\left(\frac{2h^2\sigma_i^2}{\delta^2}\right)}},\; i = 1, \dots, k-1\right\} \quad \text{(due to (9))} \\ &= \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\delta/h},\; i = 1, \dots, k-1\right\} \end{split}$$



$$\theta_k - \theta_i \ge \delta, \ i = 1, \dots, k - 1. \tag{10}$$

$$\begin{split} & \mathbb{P}\{\text{select } k\} = \mathbb{P}\{\bar{Y}_i - \bar{Y}_k < 0, \ i = 1, \dots, k - 1\} \\ & = \mathbb{P}\left\{\frac{\bar{Y}_i - \bar{Y}_k - (\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}} < \frac{-(\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}}, \ i = 1, \dots, k - 1\right\} \\ & = \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}}, \ i = 1, \dots, k - 1\right\} \\ & \geq \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\sqrt{\sigma_k^2/\left(\frac{2h^2\sigma_k^2}{\delta^2}\right) + \sigma_i^2/\left(\frac{2h^2\sigma_i^2}{\delta^2}\right)}}, \ i = 1, \dots, k - 1\right\} \quad \text{(due to (9))} \\ & = \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\delta/h}, \ i = 1, \dots, k - 1\right\} \\ & \geq \mathbb{P}\left\{Z_i < h, \ i = 1, \dots, k - 1\right\}. \quad \text{(due to (10))} \end{split}$$

### Proof. (Cont'd)

Now we only need to check that  $\mathbf{Z} = (Z_1, Z_2, \dots, Z_{k-1})^\mathsf{T}$  indeed has a multivariate normal distribution with means 0, variances 1, and common pairwise correlations 1/2 (except for some rounding error).



Now we only need to check that  $\mathbf{Z} = (Z_1, Z_2, \dots, Z_{k-1})^\mathsf{T}$  indeed has a multivariate normal distribution with means 0, variances 1, and common pairwise correlations 1/2 (except for some rounding error).

Recall that

$$Z_i = \frac{\bar{Y}_i - \bar{Y}_k - (\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}}, i = 1, \dots, k - 1,$$

and  $\boldsymbol{Y}=(\bar{Y}_1,\bar{Y}_2,\ldots,\bar{Y}_k)^{\mathsf{T}}$  is a k-variate normal random vector. So,  $\boldsymbol{Z}$ , as a linear combination of  $\boldsymbol{Y}$ , must be a (k-1)-variate normal random vector.



Now we only need to check that  $\mathbf{Z} = (Z_1, Z_2, \dots, Z_{k-1})^\mathsf{T}$  indeed has a multivariate normal distribution with means 0, variances 1, and common pairwise correlations 1/2 (except for some rounding error).

Recall that

$$Z_i = \frac{\bar{Y}_i - \bar{Y}_k - (\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}}, i = 1, \dots, k - 1,$$

and  $\boldsymbol{Y}=(\bar{Y}_1,\bar{Y}_2,\ldots,\bar{Y}_k)^{\mathsf{T}}$  is a k-variate normal random vector. So,  $\boldsymbol{Z}$ , as a linear combination of  $\boldsymbol{Y}$ , must be a (k-1)-variate normal random vector.

Besides, 
$$Var(Z_i) = \frac{Var(\bar{Y}_i - \bar{Y}_k)}{\sigma_k^2/n_k + \sigma_i^2/n_i} = \frac{\sigma_k^2/n_k + \sigma_i^2/n_i}{\sigma_k^2/n_k + \sigma_i^2/n_i} = 1.$$



Now we only need to check that  $\mathbf{Z} = (Z_1, Z_2, \dots, Z_{k-1})^\mathsf{T}$  indeed has a multivariate normal distribution with means 0, variances 1, and common pairwise correlations 1/2 (except for some rounding error).

Recall that

$$Z_i = \frac{\bar{Y}_i - \bar{Y}_k - (\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}}, i = 1, \dots, k - 1,$$

and  $\boldsymbol{Y}=(\bar{Y}_1,\bar{Y}_2,\ldots,\bar{Y}_k)^{\mathsf{T}}$  is a k-variate normal random vector. So,  $\boldsymbol{Z}$ , as a linear combination of  $\boldsymbol{Y}$ , must be a (k-1)-variate normal random vector.

Besides, 
$$\operatorname{Var}(Z_i) = \frac{\operatorname{Var}(\bar{Y}_i - \bar{Y}_k)}{\sigma_k^2/n_k + \sigma_i^2/n_i} = \frac{\sigma_k^2/n_k + \sigma_i^2/n_i}{\sigma_k^2/n_k + \sigma_i^2/n_i} = 1.$$

Moreover, since  $n_i = \left\lceil \frac{2h^2\sigma_i^2}{\delta^2} \right\rceil$  in (9),  $\frac{\sigma_i^2}{n_i} = \frac{\delta^2}{2h^2}$  approximately,  $i=1,\ldots,k$ .



Now we only need to check that  $\mathbf{Z} = (Z_1, Z_2, \dots, Z_{k-1})^\mathsf{T}$  indeed has a multivariate normal distribution with means 0, variances 1, and common pairwise correlations 1/2 (except for some rounding error).

Recall that

$$Z_i = \frac{\bar{Y}_i - \bar{Y}_k - (\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}}, i = 1, \dots, k - 1,$$

and  $\boldsymbol{Y}=(\bar{Y}_1,\bar{Y}_2,\ldots,\bar{Y}_k)^{\mathsf{T}}$  is a k-variate normal random vector. So,  $\boldsymbol{Z}$ , as a linear combination of  $\boldsymbol{Y}$ , must be a (k-1)-variate normal random vector.

Besides, 
$$\operatorname{Var}(Z_i) = \frac{\operatorname{Var}(\bar{Y}_i - \bar{Y}_k)}{\sigma_k^2/n_k + \sigma_i^2/n_i} = \frac{\sigma_k^2/n_k + \sigma_i^2/n_i}{\sigma_k^2/n_k + \sigma_i^2/n_i} = 1.$$

Moreover, since  $n_i = \left\lceil \frac{2h^2\sigma_i^2}{\delta^2} \right\rceil$  in (9),  $\frac{\sigma_i^2}{n_i} = \frac{\delta^2}{2h^2}$  approximately,  $i=1,\ldots,k$ .

For 
$$i \neq j$$
,  $\operatorname{Cov}(Z_i, Z_j) = \operatorname{Cov}\left(\frac{\bar{Y}_i - \bar{Y}_k}{\delta/h}, \frac{\bar{Y}_j - \bar{Y}_k}{\delta/h}\right) = \frac{\operatorname{Cov}(\bar{Y}_k, \bar{Y}_k)}{\delta^2/h^2} = \frac{\sigma_k^2/n_k}{\delta^2/h^2} = \frac{1}{2}$ .



Now we only need to check that  $\mathbf{Z} = (Z_1, Z_2, \dots, Z_{k-1})^\mathsf{T}$  indeed has a multivariate normal distribution with means 0, variances 1, and common pairwise correlations 1/2 (except for some rounding error).

Recall that

$$Z_i = \frac{\bar{Y}_i - \bar{Y}_k - (\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}}, i = 1, \dots, k - 1,$$

and  $\boldsymbol{Y}=(\bar{Y}_1,\bar{Y}_2,\ldots,\bar{Y}_k)^{\mathsf{T}}$  is a k-variate normal random vector. So,  $\boldsymbol{Z}$ , as a linear combination of  $\boldsymbol{Y}$ , must be a (k-1)-variate normal random vector.

Besides, 
$$\operatorname{Var}(Z_i) = \frac{\operatorname{Var}(\bar{Y}_i - \bar{Y}_k)}{\sigma_k^2/n_k + \sigma_i^2/n_i} = \frac{\sigma_k^2/n_k + \sigma_i^2/n_i}{\sigma_k^2/n_k + \sigma_i^2/n_i} = 1.$$

Moreover, since  $n_i = \left\lceil \frac{2h^2\sigma_i^2}{\delta^2} \right\rceil$  in (9),  $\frac{\sigma_i^2}{n_i} = \frac{\delta^2}{2h^2}$  approximately,  $i=1,\ldots,k$ .

For 
$$i \neq j$$
,  $\operatorname{Cov}(Z_i, Z_j) = \operatorname{Cov}\left(\frac{\bar{Y}_i - \bar{Y}_k}{\delta/h}, \frac{\bar{Y}_j - \bar{Y}_k}{\delta/h}\right) = \frac{\operatorname{Cov}(\bar{Y}_k, \bar{Y}_k)}{\delta^2/h^2} = \frac{\sigma_k^2/n_k}{\delta^2/h^2} = \frac{1}{2}$ .

Hence, by (8) and (11),  $\mathbb{P}\{\text{select } k\} \geq 1 - \alpha$ .



 Assumption 3 (indifference-zone) can be relaxed by softening the selection target to probability of good selection (PGS):

$$\mathbb{P}\left\{\left|\mathsf{selected}\ \theta_i - \max_{1 \le i \le k} \theta_i\right| < \delta\right\} \ge 1 - \alpha.$$



• Assumption 3 (indifference-zone) can be **relaxed** by *softening* the selection target to probability of good selection (PGS):

$$\mathbb{P}\left\{\left|\mathsf{selected}\ \theta_i - \max_{1 \le i \le k} \theta_i\right| < \delta\right\} \ge 1 - \alpha.$$

- Rinott (1978) proposed a procedure which can still guarantee the PCS in (7) while relaxing Assumption 4 (*known* variance), i.e., allowing *unknown* variances.
  - It requires an initial stage to estimate  $\sigma_i^2$  by sample variance.
  - The proof is more complicated.



 Assumption 3 (indifference-zone) can be relaxed by softening the selection target to probability of good selection (PGS):

$$\mathbb{P}\left\{\left|\mathsf{selected}\ \theta_i - \max_{1 \le i \le k} \theta_i\right| < \delta\right\} \ge 1 - \alpha.$$

- Rinott (1978) proposed a procedure which can still guarantee the PCS in (7) while relaxing Assumption 4 (known variance), i.e., allowing unknown variances.
  - It requires an initial stage to estimate  $\sigma_i^2$  by sample variance.
  - The proof is more complicated.
- Procedures like Bechhofer's or Rinott's are simple to implement, but the efficiency may be low.
  - The designed sample size (or, replication number),  $n_i$ , may be larger than necessary (too conservative).



- More sample efficient procedures should be in a sequential manner.
  - Take observations sequentially, i.e., one at a time.
  - Eliminate designs from continued sampling when it is statistically clear that they are inferior.
  - Simulation for a problem with a single dominant alternative may terminate very quickly.



- More sample efficient procedures should be in a sequential manner.
  - Take observations sequentially, i.e., one at a time.
  - Eliminate designs from continued sampling when it is statistically clear that they are inferior.
  - Simulation for a problem with a single dominant alternative may terminate very quickly.
- Paulson (1964) proposed fully sequential procedures, which can guarantee the PCS in (7), under Assumptions 1-3 and (a) common known variance or (b) common unknown variance.



- Suppose  $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2 = \sigma^2$  and  $\sigma^2$  is known (common known variance).
- Let  $\bar{Y}_i(r)$  be the sample mean of the first r observations.



- Suppose  $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2 = \sigma^2$  and  $\sigma^2$  is known (common known variance).
- Let  $\bar{Y}_i(r)$  be the sample mean of the first r observations.
- Paulson's Procedure
  - **1** Let  $0 < \lambda < \delta$  (a good choice is  $\lambda = \delta/2$ ), and

$$a = \ln\left(\frac{k-1}{\alpha}\right) \frac{\sigma^2}{\delta - \lambda}.$$

Let  $I = \{1, 2, ..., k\}$  and r = 0.

- 2 Let  $r \leftarrow r + 1$ . Take one observation from each alternative in I and compute  $\bar{Y}_i(r)$ ,  $\forall i \in I$ .
- $oxed{3}$  Let  $I^{\mathrm{old}}=I$  and

$$I = \left\{\ell \in I^{\mathrm{old}}: \bar{Y}_{\ell}(r) \geq \max_{i \in I^{\mathrm{old}}} \bar{Y}_{i}(r) - \max\{0, a/r - \lambda\}\right\}.$$

If |I| > 1, then go to Step 2; otherwise, select the alternative left in I as the best.

➤ Paulson's Procedure

• Kim and Nelson (2001) proposed a fully sequential procedure  $\mathcal{KN}$ , which extends Paulson's procedure, by allowing *unequal* variances and CRN.



- Kim and Nelson (2001) proposed a fully sequential procedure  $\mathcal{KN}$ , which extends Paulson's procedure, by allowing *unequal* variances and CRN.
- Commercial simulation software, Simio, implements the  $\mathcal{KN}$  procedure of Kim and Nelson (2001) as an Add-In, to help user to select the best scenario.



- Ranking and Selection (R&S) problem was first introduced in the 1950s by the statistics community:
  - rank all alternatives
  - select a subset of alternatives
  - select the best alternative (attract the most attention)



- Ranking and Selection (R&S) problem was first introduced in the 1950s by the statistics community:
  - rank all alternatives
  - select a subset of alternatives
  - select the best alternative (attract the most attention)
- Existing procedures for R&S (selection of the best) problems:
  - frequentist
  - Bayesian



- Frequentist procedures typically aim to deliver the PCS or PGS; see Kim and Nelson (2006) for a review:
  - two-stage procedures: Bechhofer (1954), Rinott (1978)
  - sequential procedures: Paulson (1964), Kim and Nelson (2001), Hong (2006)



- Frequentist procedures typically aim to deliver the PCS or PGS; see Kim and Nelson (2006) for a review:
  - two-stage procedures: Bechhofer (1954), Rinott (1978)
  - sequential procedures: Paulson (1964), Kim and Nelson (2001),
    Hong (2006)
- Bayesian procedures often allocate samples to each alternative either to maximize the Bayesian posterior PCS or to minimize the expected opportunity cost; see Chen et al. (2015) for a review:
  - optimal computing budget allocation: Chen et al. (2000), He et al. (2007)
  - value of information: Chick and Inoue (2001), Chick et al. (2010)
  - knowledge gradient: Frazier et al. (2008), Frazier et al. (2009)
  - economics of selection procedures: Chick and Gans (2009),
    Chick and Frazier (2012)



- Emerging research problems that expend classical R&S from different perspectives; see Hong et al. (2021) for a review:
  - large-scale R&S using parallel computing
  - constrained R&S
  - multi-objective R&S
  - R&S with input uncertainty
  - R&S with covariates



- Emerging research problems that expend classical R&S from different perspectives; see Hong et al. (2021) for a review:
  - large-scale R&S using parallel computing
  - constrained R&S
  - multi-objective R&S
  - R&S with input uncertainty
  - R&S with covariates
- What if the number of candidate designs (feasible solutions) is huge, or countably infinite, or even uncountably infinite?



- Emerging research problems that expend classical R&S from different perspectives; see Hong et al. (2021) for a review:
  - large-scale R&S using parallel computing
  - constrained R&S
  - multi-objective R&S
  - R&S with input uncertainty
  - R&S with covariates
- What if the number of candidate designs (feasible solutions) is huge, or countably infinite, or even uncountably infinite?
  - Simulation Optimization (or called Optimization via Simulation)



• R&S Problem vs Multi-Arm Bandit (MAB) Problem:

